Блок для Автомагнитолы Своими Руками
Это трудно назвать стабилизатором.
Причина проста и понятна: конденсатор на плате 200 мкФ, он служит только для нормальной работы DC-DC преобразователя. При подаче на вход напряжения от лабораторного блока питания, всё было нормально. Выход очевиден: надо питать стабилизатор от источника с малыми пульсациями, т. е. добавить после моста ёмкость.
Вот напряжение при нагрузке 1, 5 А на входе модуля без дополнительного конденсатора.
С дополнительным конденсатором 4700 мкФ на входе, пульсации на выходе резко уменьшились, но при 1, 5 А были ещё заметны. При уменьшении выходного напряжения до 16 В, идеальная прямая линия (2 В /клетка).
Падение напряжения на модуле DC-DC должно быть минимум 2…2, 5 В.
Теперь можно смотреть пульсации на выходе импульсного преобразователя.
Видны небольшие пульсации с частотой 100 Гц промодулированные частотой несколько десятков кГц. Datasheet на 2596 рекомендует дополнительный LC фильтр на выходе. Так мы и сделаем. В качестве сердечника я использовал цилиндрический сердечник от неисправного БП компьютера и намотал обмотку в два слоя проводом 0, 8 мм.
На плате красным цветом показано место для установки перемычки – общего провода двух каналов, стрелкой – место для припаивания общего провода, если не использовать клеммы.
Посмотрим, что стало с ВЧ-пульсациями.
Их больше нет. Остались небольшие пульсации с частотой 100 Гц.
Неидеально, но неплохо.
Замечу, что при увеличении выходного напряжения, дроссель в модуле начинает дребезжать и на выходе резко растёт ВЧ-помеха, стоит напряжение чуть уменьшить (всё это при нагрузке 12 Ом), помехи и шум полностью пропадают.
Для монтажа модуля я применил самодельные «стойки» из луженого провода диаметром 1 мм.
Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт.
Плата позволяет легко заменить при необходимости модуль DC-DC.
Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).
Итоговая схема включения:
Схема проста и очевидна.При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов.
При работе от лабораторного блока питания, нагрев при токах 1, 5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.
Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.
Выводы:
1. Необходим трансформатор с сильноточной вторичной обмоткой или с запасом по напряжению, в этом случае ток нагрузки может превышать ток обмотки трансформатора.2. При токах порядка 2 А и более желателен небольшой теплоотвод на диодный мост и микросхему 2596.
3. Конденсатор питания желателен большой ёмкости, это благоприятно сказывается на работе стабилизатора. Даже крупная и качественная ёмкость немного нагревается, следовательно желательно малое ESR.
4. Для подавления пульсаций с частотой преобразования, LC фильтр на выходе необходим.
5. Данный стабилизатор имеет явное преимущество перед обычным компенсационным в том, что может работать в широком диапазоне выходных напряжений, при малых напряжениях можно получить на выходе ток больше, чем может обеспечить трансформатор.
6. Модули позволяют сделать блок питания с неплохими параметрами просто и быстро, обойдя подводные камни изготовления плат для импульсных устройств, то есть хороши для начинающих радиолюбителей.
Файлы:
Файл печатной платы в формате lay.▼ | Файл 5, 67 Kb загружен 55 раз.